log in |
Although we often call any number in form k*b^n+1 a Proth number, strict definition of Proth numbers requires 2^n > k. For classic Sierpiński problem, it does not matter. For example, prime number 12743*2^9+1 is OK to eliminate k=12743 from any of Sierpiński conjectures. But this is not a Proth prime because condition 2^n > k is not met (512 < 12743).
After initial removal of small (up to n=100K) and known primes, we had... exactly 17 k’s left to test! The same number as in original Sierpiński "Seventeen-or-Bust" ("SoB") project. Eventually we started to call our project as "Seventeen New or Bust", or, in short form, "A SNoB project". Probably it was a joke first, but name was accepted by community and became official project name.
The project has three phases, two of them corresponds to existing Sierpiński projects. Their state and findings are posted below. All found primes also were tested for Fermat divisors (currently no divisors were found).
K | Prime | Digits | Tested depth (N) |
---|---|---|---|
22249 | 22249*2^408602+1 | 123006 | Up to prime Found by gd_barnes in 2010, see Note 1 |
23873 | 23873*2^136733+1 | 41166 | Up to prime |
28831 | 28831*2^204580+1 | 61590 | Up to prime |
35461 | 35461*2^129820+1 | 39085 | Up to prime |
39527 | 39527*2^143055+1 | 43069 | Up to prime |
44243 | 44243*2^440969+1 | 132750 | Up to prime |
54953 | 54953*2^622065+1 | 187265 | Up to prime |
57377 | 57377*2^447439+1 | 134698 | Up to prime |
68221 | 68221*2^200944+1 | 60496 | Up to prime |
77297 | 77297*2^118499+1 | 35677 | Up to prime |
Note 1: this prime was reported by gd_barnes in September 2010, but he used an alternative notation 88996*2^408600+1, so the prime was left unnoticed and was discovered again in this project.
7 remaning candidates were tested on this server using LLR2, which led to discovery of two new primes. The search was stopped at 10M because tasks length started to grow significantly. Interesting that there is a big gap - last prime was found near 2.7M, and there are no primes between 2.7M and 10M.
K | Prime | Digits | Tested depth (N) |
---|---|---|---|
23971 | - | 10M | |
45323 | - | 10M | |
50777 | - | 10M | |
50873 | - | 10M | |
68633 | 68633*2^2715609+1 (T5K link) | 817485 | Up to prime |
71657 | 71657*2^1146175+1 | 345038 | Up to prime |
76877 | - | 10M |
K | Prime | Digits | Tested depth (N) |
---|---|---|---|
90227 | 90227*2^138543+1 | 41711 | Up to prime |
97159 | 97159*2^523526+1 | 157603 | Up to prime |
130819 | 130819*2^114806+1 | 34566 | Up to prime |
145459 | 145459*2^272314+1 | 81980 | 420238 (second prime, Note 2) |
160817 | 160817*2^756599+1 | 227765 | Up to prime |
165049 | 165049*2^111914+1 | 33695 | Up to prime |
165541 | 165541*2^627460+1 | 188890 | Up to prime |
171499 | 171499*2^200746+1 | 60436 | Up to prime |
179147 | 179147*2^132227+1 | 39810 | Up to prime |
192023 | 192023*2^507229+1 | 152697 | Up to prime |
201031 | 201031*2^170260+1 | 51259 | Up to prime |
221989 | 221989*2^351586+1 | 105844 | Up to prime |
248131 | 248131*2^204924+1 | 61694 | Up to prime |
Note 2: These tests were run by few people in parallel using same K but different ranges, so two primes were found for K = 145459; second one is 145459*2^420238+1.
No further testing took place yet for 6 remaining sequences:
K | Prime | Digits | Tested depth (N) |
---|---|---|---|
83599 | - | 2M | |
96407 | - | 2M | |
97667 | - | 2M | |
129769 | - | 2M | |
149693 | - | 2M | |
225803 | - | 2M |
There were 290 sequences after removal of known T5K primes and quick testing up to 100K. Manual testing up to 500K removed 75 sequences (215 remains). Below is a list of found primes (testing depth for these k was up to prime).
K | Prime | Digits | K | Prime | Digits | K | Prime | Digits | ||
---|---|---|---|---|---|---|---|---|---|---|
301607 | 301607*2^229647+1 | 69137 | 517651 | 517651*2^204528+1 | 61575 | 828287 | 828287*2^483751+1 | 145630 | ||
308423 | 308423*2^395337+1 | 119014 | 525173 | 525173*2^159553+1 | 48036 | 836543 | 836543*2^290465+1 | 87445 | ||
319531 | 319531*2^212252+1 | 63900 | 548869 | 548869*2^304442+1 | 91652 | 845899 | 845899*2^338386+1 | 101871 | ||
331247 | 331247*2^374775+1 | 112825 | 554573 | 554573*2^305373+1 | 91933 | 846857 | 846857*2^453343+1 | 136476 | ||
333227 | 333227*2^214471+1 | 64568 | 558991 | 558991*2^188204+1 | 56661 | 868523 | 868523*2^109737+1 | 33041 | ||
346223 | 346223*2^373085+1 | 112316 | 575539 | 575539*2^431950+1 | 130036 | 872177 | 872177*2^214575+1 | 64600 | ||
351199 | 351199*2^149618+1 | 45046 | 584971 | 584971*2^266656+1 | 80278 | 882077 | 882077*2^478755+1 | 144126 | ||
353477 | 353477*2^237219+1 | 71416 | 588083 | 588083*2^244477+1 | 73601 | 888499 | 888499*2^460922+1 | 138758 | ||
357017 | 357017*2^332367+1 | 100058 | 590329 | 590329*2^155334+1 | 46766 | 892249 | 892249*2^141518+1 | 42608 | ||
371791 | 371791*2^144840+1 | 43607 | 656063 | 656063*2^133969+1 | 40335 | 907043 | 907043*2^305293+1 | 91909 | ||
374149 | 374149*2^256202+1 | 77131 | 693467 | 693467*2^112027+1 | 33730 | 911123 | 911123*2^479981+1 | 144495 | ||
375121 | 375121*2^132268+1 | 39823 | 704507 | 704507*2^321379+1 | 96751 | 924683 | 924683*2^421877+1 | 127004 | ||
383717 | 383717*2^325171+1 | 97892 | 710153 | 710153*2^342801+1 | 103200 | 944011 | 944011*2^372216+1 | 112055 | ||
393497 | 393497*2^255283+1 | 76854 | 714229 | 714229*2^111318+1 | 33516 | 960301 | 960301*2^430616+1 | 129635 | ||
396203 | 396203*2^480729+1 | 144720 | 722207 | 722207*2^111831+1 | 33671 | 1003441 | 1003441*2^191044+1 | 57516 | ||
397309 | 397309*2^296070+1 | 89132 | 722419 | 722419*2^150414+1 | 45285 | 1013183 | 1013183*2^136521+1 | 41103 | ||
399617 | 399617*2^340955+1 | 102644 | 752303 | 752303*2^146405+1 | 44079 | 1015727 | 1015727*2^193231+1 | 58175 | ||
412501 | 412501*2^279708+1 | 84207 | 759653 | 759653*2^154085+1 | 46391 | 1024609 | 1024609*2^123754+1 | 37260 | ||
416659 | 416659*2^412866+1 | 124291 | 759947 | 759947*2^108487+1 | 32664 | 1028513 | 1028513*2^164921+1 | 49653 | ||
429931 | 429931*2^382776+1 | 115233 | 762769 | 762769*2^188586+1 | 56776 | 1034281 | 1034281*2^180464+1 | 54332 | ||
459263 | 459263*2^137237+1 | 41319 | 768773 | 768773*2^302509+1 | 91071 | 1034599 | 1034599*2^233258+1 | 70224 | ||
467417 | 467417*2^130927+1 | 39419 | 773447 | 773447*2^115035+1 | 34635 | 1037753 | 1037753*2^365805+1 | 110125 | ||
479657 | 479657*2^296367+1 | 89222 | 774977 | 774977*2^261235+1 | 78646 | 1042193 | 1042193*2^164893+1 | 49644 | ||
488341 | 488341*2^466940+1 | 140569 | 802231 | 802231*2^101528+1 | 30569 | 1043237 | 1043237*2^371971+1 | 111981 | ||
495979 | 495979*2^480286+1 | 144587 | 812117 | 812117*2^141051+1 | 42467 | 1047661 | 1047661*2^382784+1 | 115236 |
Remaining 215 sequences were tested up to 1M. This work was finished in March 2022, finding 40 primes.
K | Prime | Digits | K | Prime | Digits | K | Prime | Digits | ||
---|---|---|---|---|---|---|---|---|---|---|
285473 | 285473*2^530921+1 | 159829 | 619013 | 619013*2^849281+1 | 255665 | 899449 | 899449*2^981210+1 | 295380 | ||
344363 | 344363*2^603009+1 | 181530 | 624511 | 624511*2^962636+1 | 289789 | 923177 | 923177*2^611483+1 | 184081 | ||
392479 | 392479*2^958886+1 | 288660 | 653063 | 653063*2^899301+1 | 270723 | 923359 | 923359*2^541446+1 | 162998 | ||
420113 | 420113*2^524009+1 | 157749 | 665423 | 665423*2^566441+1 | 170522 | 984173 | 984173*2^872129+1 | 262543 | ||
428657 | 428657*2^720223+1 | 216815 | 670309 | 670309*2^520410+1 | 156665 | 989147 | 989147*2^635919+1 | 191437 | ||
441923 | 441923*2^774725+1 | 233222 | 680851 | 680851*2^741248+1 | 223144 | 992731 | 992731*2^731740+1 | 220282 | ||
481727 | 481727*2^883059+1 | 265833 | 701357 | 701357*2^532979+1 | 160449 | 1010693 | 1010693*2^560473+1 | 168726 | ||
498781 | 498781*2^557856+1 | 167938 | 724351 | 724351*2^675612+1 | 203386 | 1013657 | 1013657*2^922163+1 | 277605 | ||
499729 | 499729*2^725234+1 | 218323 | 735679 | 735679*2^885398+1 | 266538 | 1016693 | 1016693*2^963829+1 | 290148 | ||
504769 | 504769*2^839566+1 | 252741 | 743357 | 743357*2^860491+1 | 259040 | 1028431 | 1028431*2^556356+1 | 167486 | ||
506749 | 506749*2^574746+1 | 173022 | 749971 | 749971*2^843268+1 | 253855 | 1045187 | 1045187*2^508967+1 | 153221 | ||
510893 | 510893*2^556521+1 | 167536 | 750083 | 750083*2^684961+1 | 206200 | 1048099 | 1048099*2^605090+1 | 182157 | ||
609769 | 609769*2^879034+1 | 264622 | 761749 | 761749*2^716354+1 | 215650 | |||||
615151 | 615151*2^800316+1 | 240925 | 851963 | 851963*2^558637+1 | 168173 |
Remaining 175 sequences were tested up to 2M.
K | Prime | Digits | K | Prime | Digits | K | Prime | Digits | ||
---|---|---|---|---|---|---|---|---|---|---|
273679 | 273679*2^1052058+1 | 316707 | 545971 | 545971*2^1082956+1 | 326008 | 760583 | 760583*2^1433845+1 | 431637 | ||
279361 | 279361*2^1613712+1 | 485782 | 559789 | 559789*2^1030634+1 | 310258 | 769343 | 769343*2^1230661+1 | 370472 | ||
305147 | 305147*2^1030527+1 | 310226 | 599003 | 599003*2^1828141+1 | 550332 | 794867 | 794867*2^1702787+1 | 512596 | ||
312121 | 312121*2^1109856+1 | 334106 | 599513 | 599513*2^1282453+1 | 386063 | 844457 | 844457*2^1688323+1 | 508242 | ||
357271 | 357271*2^1370332+1 | 412517 | 609737 | 609737*2^1689147+1 | 508490 | 852019 | 852019*2^1763242+1 | 530795 | ||
363917 | 363917*2^1655731+1 | 498431 | 616909 | 616909*2^1899194+1 (T5K link) | 571721 | 867151 | 867151*2^1952104+1 (T5K link) | 587648 | ||
365221 | 365221*2^1767932+1 | 532207 | 666409 | 666409*2^1083222+1 | 326089 | 879049 | 879049*2^1174370+1 | 353527 | ||
447061 | 447061*2^1206128+1 | 363087 | 684617 | 684617*2^1098123+1 | 330574 | 902191 | 902191*2^1138968+1 | 342870 | ||
499561 | 499561*2^1759204+1 | 529579 | 702707 | 702707*2^1165279+1 | 350790 | 902453 | 902453*2^1050893+1 | 316357 | ||
501107 | 501107*2^1058835+1 | 318747 | 734147 | 734147*2^1047447+1 | 315319 | 1001419 | 1001419*2^1675042+1 | 504244 | ||
504061 | 504061*2^1714720+1 | 516188 | 734177 | 734177*2^1180107+1 | 355254 | 1034809 | 1034809*2^1077230+1 | 324285 | ||
518671 | 518671*2^1157008+1 | 348300 | 749447 | 749447*2^1036639+1 | 312066 | 1039127 | 1039127*2^1193367+1 | 359246 | ||
520471 | 520471*2^1756052+1 | 528631 | 751999 | 751999*2^1589870+1 | 478605 |
No organized testing took place yet for 137 remaining sequences.
If not specified, current tested depth N = 2.0M.
K | Prime | Digits | Depth | K | Prime | Digits | Depth | K | Prime | Digits | Depth | K | Prime | Digits | Depth | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
272341 | - | 473543 | - | 651857 | - | 858079 | - | |||||||||||
274699 | - | 473567 | - | 654499 | - | 860117 | - | |||||||||||
279767 | - | 474323 | - | 656123 | - | 867271 | - | |||||||||||
285601 | - | 479783 | - | 656753 | - | 868339 | - | |||||||||||
286037 | - | 484763 | - | 664639 | - | 870061 | - | |||||||||||
287393 | - | 491147 | - | 667861 | - | 872119 | - | |||||||||||
289171 | - | 499337 | - | 674477 | - | 878029 | - | |||||||||||
294181 | - | 502613 | - | 678173 | - | 879497 | - | |||||||||||
305063 | - | 515357 | - | 681413 | - | 881537 | - | |||||||||||
310339 | - | 517913 | - | 694973 | - | 884723 | - | |||||||||||
311573 | - | 532703 | - | 703643 | - | 887153 | - | |||||||||||
340441 | - | 536839 | - | 705983 | - | 894409 | - | |||||||||||
340759 | - | 538943 | - | 711833 | - | 894827 | - | |||||||||||
351167 | - | 545401 | - | 714563 | - | 895579 | - | |||||||||||
356359 | - | 548033 | - | 718849 | - | 901067 | - | |||||||||||
359933 | - | 553159 | - | 721141 | - | 904489 | - | |||||||||||
360331 | - | 561769 | - | 721397 | - | 925907 | - | |||||||||||
362881 | - | 566569 | - | 736249 | - | 926371 | - | |||||||||||
365867 | - | 571471 | - | 757343 | - | 935723 | - | |||||||||||
366953 | - | 580831 | - | 766531 | - | 946879 | - | |||||||||||
368299 | - | 583189 | - | 766801 | - | 957977 | - | |||||||||||
381799 | - | 588317 | - | 772411 | - | 961099 | - | |||||||||||
382247 | - | 589021 | - | 777559 | - | 964673 | - | |||||||||||
392033 | - | 590033 | - | 785153 | - | 968491 | - | |||||||||||
393287 | - | 599011 | - | 795983 | - | 971389 | - | |||||||||||
400613 | - | 603767 | - | 802613 | - | 972739 | - | |||||||||||
412591 | - | 606199 | - | 818327 | - | 979039 | - | |||||||||||
418591 | - | 609227 | - | 819437 | - | 983027 | - | |||||||||||
433457 | - | 626303 | - | 823969 | - | 1000313 | - | |||||||||||
451351 | - | 630121 | - | 826201 | - | 1004987 | - | |||||||||||
452119 | - | 632659 | - | 829643 | - | 1013689 | - | |||||||||||
452191 | - | 632663 | - | 836687 | - | 1040297 | - | |||||||||||
452567 | - | 633481 | - | 843079 | - | |||||||||||||
457217 | - | 641327 | - | 846347 | - | |||||||||||||
462829 | - | 648751 | - | 856043 | - |